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Chapter 05: Continuous Random Variables

Probability Theory: Continuous Random Variables Continuous Random Variables

Continuous Random Variables
Examples of RVs whose set of possible values is uncountable

The time that a train arrives at a specified stop
The lifetime of a transistor

Definition
We say that X is a continuous RV if there exists a nonnegative function
f , defined for all real x ∈ (−∞,∞), having the property that, for any
measurable set B of real numbers,

P{X ∈ B}=
∫

B
f (x) dx

The function f is called the probability density function of the random
variable X .

1 = P
{

X ∈ (−∞,∞)
}

=
∫ ∞

−∞
f (x) dx
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Continuous Random Variables
Answering probability statements about continuous RVs

P{a≤ X ≤ b}=
∫ b

a
f (x) dx P{X = a}=

∫ a

a
f (x) dx = 0

P{a < X < b}= P{a≤ X < b}= P{a < X ≤ b}= P{a≤ X ≤ b}
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Continuous Random Variables
f (a) is a measure of how likely it is that the RV will be near a

P
{

a− ε
2
≤ X ≤ a +

ε
2

}
=
∫ a+ ε

2

a− ε
2

f (x) dx ≈ εf (a)

when ε is small and when f (·) is continuous at x = a

Example
Find P{X > 1}, where X is a continuous RV whose pdf is given by

f (x) =

{
C(4x−2x2) 0 < x < 2
0 otherwise

1 =
∫ ∞

−∞
f (x) dx = C

∫ 2

0
4x−2x2 dx = C

(
2x2− 2x3

3

)∣∣∣∣∣

2

0

=
8C
3

∴ C =
3
8

P{X > 1}=
∫ ∞

1
f (x) dx =

3
8

∫ 2

1
4x−2x2 dx =

3
8

(
2x2− 2x3

3

)∣∣∣∣∣

2

1

=
1
2
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Continuous Random Variables
Cumulative Distribution Function

F (a) = P{X ∈ (−∞,a]}=
∫ a

−∞
f (x) dx

d

da
F (a) = f (a)

Example
If X is continuous with distribution function FX and density function fX ,
find the density function of Y = X 2

FY (a) = P{Y ≤ a}
= P{X 2 ≤ a}
= P{−

√
a≤ X ≤

√
a}

= FX (
√

a)−FX (−
√

a)

fY (a) = d
da FY (a)

= d
da

(
FX (
√

a)−FX (−
√

a)
)

=
1

2
√

a

(
fX (
√

a) + fX (−
√

a)
)
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Expectation of Continuous RVs
The expectation (or expected value) of a continuous RV X
If X is a continuous RV having pdf f (x), then,

f (x) dx ≈ P{x ≤ X ≤ x + dx} for dx small

it is easy to see that
E [X ] =

∫ ∞

−∞
xf (x) dx

Example

Find E [X ] when the pdf of X is: f (x) =

{
2x 0≤ x ≤ 1
0 otherwise

E [X ] =
∫ ∞

−∞
xf (x) dx

=
∫ 1

0
2x2 dx =

2
3
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Expectation of Continuous RVs
Example

Find E [eX ] when the pdf of X is: f (x) =

{
1 0≤ x ≤ 1
0 otherwise

Let Y = eX . We start by determining FY and then fY . Now, for 1≤ y ≤ e,

FY (y) = P{Y ≤ y}
= P{eX ≤ y}
= P{X ≤ log(y)}

=
∫ log(y)

−∞
f (x) dx

=
∫ log(y)

0
1 dx

= log(y)

fY (y) = d
dy FY (y)

=
1
y

(1≤ y ≤ e)

E [eX ] = E [Y ]

=
∫ ∞

−∞
yfY (y) dy

=
∫ e

1
1 dy

= e−1
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Expectation of a Function of a Continuous RV
Proposition
If X is a continuous RV having pdf f (x), then, for any real-valued function
g,

E [g(X )] =
∫ ∞

−∞
g(x)f (x) dx

Revisiting the previous example

Find E [eX ] when the pdf of X is: f (x) =

{
1 0≤ x ≤ 1
0 otherwise

E [eX ] =
∫ ∞

−∞
ex f (x) dx

=
∫ 1

0
ex dx

= e−1
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Expectation of a Linear Function of a Continuous RV

Corollary
If a and b are constants, then

E [aX + b] = aE [X ] + b

Proof

E [aX + b] =
∫ ∞

−∞
(ax + b)f (x) dx

= a
∫ ∞

−∞
xf (x) dx + b

∫ ∞

−∞
f (x) dx

= aE [X ] + b
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Variance of a Continuous RV
Definition
if X is a RV variable with expected value µ, then the variance of X is
defined (for any type of RV) by

Var(X ) = E
[
(X −µ)2

]

= E [X 2]−
(

E [X ]
)2

Example

Find Var(X ) when the pdf of X is: f (x) =

{
2x 0≤ x ≤ 1
0 otherwise

E [X 2] =
∫ ∞

−∞
x2f (x) dx =

∫ 1

0
2x3 dx =

1
2

Var(X ) = E [X 2]−
(

E [X ]
)2

=
1
2
−
(

2
3

)2

=
1
18
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Common Continuous Probability Distributions

Uniform Distribution
Exponential Distribution
Gamma Distribution
Normal Distribution
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Uniform Distribution

The Standard Uniform Random Variable
A RV is said to be uniformly distributed over the interval (0,1) if its
probability density function is given by

f (x) =

{
1 0 < x < 1
0 otherwise

∫ ∞

−∞
f (x) dx =

∫ 1

0
1 dx = 1

The probability that X is in any particular subinterval of (0, 1) equals the
length of that subinterval. For any 0 < a < b < 1,

P{a≤ X ≤ b}=
∫ b

a
f (x) dx = b−a
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Uniform Distribution
The Uniform Random Variable
A RV is said to be uniformly distributed on the interval (α,β ) if its pdf is
given by

f (x) =





1
β−α α < x < β
0 otherwise

F (a) =





0 a≤ α
a−α
β−α α < a < β
1 a≥ β
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Uniform Distribution

E [X ] =
∫ ∞

−∞
xf (x) dx

=
∫ β

α

x
β −α

dx

=
1

β −α


x2

2

∣∣∣∣∣

β

α




=
β 2−α2

2(β −α)

=
β + α

2

E [X 2] =
∫ ∞

−∞
x2f (x) dx

=
∫ β

α

x2

β −α
dx

=
β 3−α3

3(β −α)

=
β 2 + αβ + α2

3

Var(X ) = E [X 2]−
(

E [X ]
)2

=
β 2 + αβ + α2

3
− (β + α)2

4

=
(β −α)2

12
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Uniform Distribution
Example
Buses arrive at a specified stop at 15-minute intervals starting at 7 A.M.
That is, they arrive at 7, 7:15, 7:30, 7:45, and so on. If a passenger
arrives at the stop at a time that is uniformly distributed between 7 and
7:30, find the probability that he waits

1 less than 5 minutes for a bus;
2 more than 10 minutes for a bus.

Let X denote the number of minutes past 7 that the passenger
arrives at the stop
X ∼ Uniform(0,30)

1 P{10 < X < 15}+ P{25 < X < 30}=
∫ 15

10

1
30

dx +
∫ 30

25

1
30

dx =
1
3

2 P{0 < X < 5}+ P{15 < X < 20}=
∫ 5

0

1
30

dx +
∫ 20

15

1
30

dx =
1
3
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Exponential Distribution

The Exponential Random Variable
A continuous RV is said to be an exponential random variable with
parameter λ if, for some λ > 0,

f (x) =

{
λe−λx x ≥ 0
0 x < 0

∫ ∞

−∞
f (x) dx =

∫ ∞

0
λe−λx dx

=−e−λx

∣∣∣∣∣

∞

0

= 1

F (a) =
∫ a

−∞
f (x) dx

=
∫ a

0
λe−λx dx

=−e−λx

∣∣∣∣∣

a

0

= 1− e−λa (a≥ 0)
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Exponential Distribution

E [X n] =
∫ ∞

−∞
xnf (x) dx

=
∫ ∞

0
xnλe−λx dx

Integrating by parts (with u = xn and v =−e−λx ) yields,

E [X n] =−xne−λx

∣∣∣∣∣

∞

0

+
∫ ∞

0
e−λxnxn−1 dx

= 0 +
n
λ

∫ ∞

0
λe−λxxn−1 dx

=
n
λ

E [X n−1]

E [X ] =
1
λ

E [X 0] =
1
λ

E [X 2] =
2
λ

E [X ] =
2

λ 2

Var(X ) = E [X 2]−
(

E [X ]
)2

=
2

λ 2 −
1

λ 2 =
1

λ 2
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Exponential Distribution

Examples of RVs that generally obey the exponential distribution
In practice, the exponential distribution often arises as the distribution of
the amount of time until some specific event occurs.

The amount of time (starting from now) until an earthquake occurs
The amount of time (starting from now) until a new war breaks out
The amount of time (starting from now) until a telephone call you
receive turns out to be a wrong number
· · ·
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Exponential Distribution
Example
Suppose that the length of a phone call in minutes is an exponential RV
with parameter λ = 1

10 . If someone arrives immediately ahead of you at
a public telephone booth, find the probability that you will have to wait

1 more than 10 minutes;
2 between 10 and 20 minutes.

Let X denote the length of the call made by the person in the booth
X ∼ Exponential(0.1); i.e., F (a) = 1− e−0.1a

1 P{X > 10}= 1−F (10)

= e−1 ≈ .368
2 P{10 < X < 20}= F (20)−F (10)

= e−1− e−2 ≈ .233
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Exponential Distribution
Memoryless random variable
We say that a nonnegative RV X is memoryless if

P{X > s + t |X > t}= P{X > s} ∀s, t ≥ 0

Thinking of X as being the lifetime of some instrument, if the instrument
is alive at age t , the distribution of the remaining amount of time that it
survives is the same as the original lifetime distribution.

It is as if the instrument does not “remember” that it has already been in
use for a time t .

P{X > s + t ,X > t}
P{X > t} = P{X > s}

P{X > s + t}= P{X > s}P{X > t}

For an exponential RV,

P{X > a}= 1−F (a) = e−λa

e−λ(s+t) = e−λse−λ t
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Exponential Distribution

Example
Suppose that the number of miles that a car can run before its battery
wears out is exponentially distributed with an average value of 10,000
miles. If a person desires to take a 5000-mile trip, what is the probability
that she will be able to complete the trip without having to replace the
car battery? What if the distribution is not exponential?

From the memoryless property of the exponential distribution, the re-
maining lifetime (in thousands of miles) of the battery is exponential with
parameter λ = 1

10

P{remaining lifetime > 5}= 1−F (5) = e−5λ = e−1/2 ≈ .604

If the lifetime distribution F is not exponential

P{lifetime > t + 5|lifetime > t}=
1−F (t + 5)

1−F (t)
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Gamma Distribution
The Gamma Random Variable
A RV is said to have a gamma distribution with parameters (α,λ ), α > 0,
λ > 0, if its pdf is given by

f (x) =





λ αxα−1e−λx

Γ(α)
x ≥ 0

0 x < 0

where Γ(α), called the gamma function, is defined as

Γ(α) =
∫ ∞

0
e−yyα−1 dy

The gamma distribution with λ = 1
2 and α = n/2, n ∈ Z+, is called the

χ2
n (read “chi-squared”) distribution with n degrees of freedom. The

chi-squared distribution arises in practice as the distribution of the error
involved in attempting to hit a target in n-dimensional space when each
coordinate error is normally distributed.
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Gamma Distribution
The Gamma function

Γ(α) =
∫ ∞

0
e−yyα−1 dy

Integration of Γ(α) by parts (u = yα−1, v =−e−y ) yields

Γ(α) =−e−yyα−1
∣∣∣∣
∞

0
+
∫ ∞

0
e−y (α−1)yα−2 dy

= (α−1)
∫ ∞

0
e−yyα−2 dy

= (α−1)Γ(α−1)

For integral values of α, say, α = n,

Γ(n) = (n−1)Γ(n−1)

= (n−1)(n−2)Γ(n−2)

= · · ·
= (n−1)(n−2) · · ·2×1×Γ(1) =⇒ Γ(n) = (n−1)!
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Gamma Distribution

E [X ] =
∫ ∞

−∞
xf (x) dx

=
1

Γ(α)

∫ ∞

0
λxe−λx (λx)α−1 dx

=
1

λ Γ(α)

∫ ∞

0
e−λx (λx)α dλx

=
Γ(α + 1)

λ Γ(α)

=
α
λ

E [X 2] =
∫ ∞

−∞
x2f (x) dx

=
1

Γ(α)

∫ ∞

0
λx2e−λx (λx)α−1 dx

=
1

λ 2Γ(α)

∫ ∞

0
e−λx (λx)α+1 dλx

=
Γ(α + 2)

λ 2Γ(α)

=
α(α + 1)

λ 2

Var(X ) = E [X 2]−
(

E [X ]
)2

=
α(α + 1)

λ 2 − α2

λ 2

=
α
λ 2
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Gamma Distribution

The Erlang distribution is a special case of the gamma distribution

The Erlang Random Variable
A RV is said to have an Erlang distribution with parameters (n,λ ), λ > 0,
n ∈ Z+, if its pdf is given by

f (t) =





λ (λ t)n−1e−λ t

(n−1)!
t ≥ 0

0 t < 0

∫ ∞

−∞
f (t) dt =

∫ ∞

0

λ (λ t)n−1e−λ t

(n−1)!
dt =

1
(n−1)!

∫ ∞

0
(λ t)n−1e−λ t dλ t

=
Γ(n)

(n−1)!
=

(n−1)!

(n−1)!
= 1
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Gamma Distribution

Erlang distribution with parameters (n,λ ) arises as the distribution of the
amount of time one has to wait until a total of n events has occurred.

Let N(t) denote the number of events that have occurred by time t
Let Tn denote the time at which the nth event occurs
N(t)∼ Poisson(λ t)

P{Tn ≤ t}= P{N(t)≥ n}

=
∞

∑
j=n

P{N(t) = j}

=
∞

∑
j=n

e−λ t (λ t)j

j!

f (t) = d
dt P{Tn ≤ t}

=
∞

∑
j=n

e−λ t j(λ t)j−1λ
j!

−
∞

∑
j=n

λe−λ t (λ t)j

j!

=
∞

∑
j=n

λe−λ t (λ t)j−1

(j−1)!
−

∞

∑
j=n

λe−λ t (λ t)j

j!

=
λe−λ t (λ t)n−1

(n−1)!
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Gamma Distribution

Expectation and variance of Erlang as a special case of Gamma
For integral values of α, say, α = n,

E [X ] =
α
λ

=
n
λ

Var(X ) =
α
λ 2 =

n
λ 2

Erlang RV as a sum of n independent identical exponential RVs
X = X1 + X2 + · · ·+ Xn

(
X ∼ Erlang(n,λ ),Xi ∼ Exponential(λ ), indep.Xi ’s

)

E [X ] = E [X1] + E [X2] + · · ·+ E [Xn]

=
1
λ

+
1
λ

+ · · ·+ 1
λ

=
n
λ

Var(X ) = Var(X1) + Var(X2) + · · ·+ Var(Xn)

=
1

λ 2 +
1

λ 2 + · · ·+ 1
λ 2

=
n

λ 2
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Normal Distribution
The Normal Random Variable
We say that X is a normal RV, or simply that X is normally distributed,
with parameters µ and σ2 if the density of X is given by

f (x) =
1√
2πσ

e−(x−µ)2/2σ2 −∞ < x < ∞

This density function is a bell-shaped curve that is symmetric about µ.

Figure: Normal density function: (a) µ = 0,σ = 1; (b) arbitrary µ,σ2.
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Normal Distribution

f (x) is a probability function

∫ ∞

−∞
f (x) dx =

1√
2πσ

∫ ∞

−∞
e−(x−µ)2/2σ2

dx

Making the substitution y = (x−µ)/σ ,
∫ ∞

−∞
f (x) dx =

1√
2π

∫ ∞

−∞
e−y2/2 dy

=
1√
2π
×
√

2π

= 1
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Normal Distribution

I =
∫ ∞

−∞
e−y2/2 dy

I2 =
∫ ∞

−∞
e−y2/2 dy

∫ ∞

−∞
e−x2/2 dx

=
∫ ∞

−∞

∫ ∞

−∞
e−(y

2+x2)/2 dy dx

Changing the variables to polar coordinates (x = r cosθ , y = r sinθ and
dy dx = r dθ dr )

I2 =
∫ ∞

0

∫ 2π

0
e−r2/2 r dθ dr

= 2π
∫ ∞

0
re−r2/2 dr

=−2π e−r2/2
∣∣∣
∞

0

= 2π =⇒ I =
√

2π
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Normal Distribution
Linear function of normal RVs
if X is normally distributed with parameters µ and σ2, then Y = aX + b
is normally distributed with parameters aµ + b and a2σ2.

Proof when a > 0: (Similar proof when a < 0)

FY (x) = P{Y ≤ x}= P{aX + b ≤ x}= P
{

X ≤ x−b
a

}
= FX

(
x−b

a

)

fY (x) = d
dx FY (x) =

1
a

fX

(
x−b

a

)

=
1√

2πaσ
exp

{
−
(

x−b
a
−µ

)2/
2σ2

}

=
1√

2π(aσ)
exp

{
−(x−b−aµ)2

/
2(aσ)2

}

=⇒ Y ∼ Normal
(

aµ + b,a2σ2
)
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Normal Distribution

Corollary

if X is normally distributed with parameters µ and σ2, then Z = (X−µ)/σ
is normally distributed with parameters 0 and 1. Such a random variable
is said to be a standard, or a unit, normal random variable.
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Normal Distribution

For a standard normal random variable Z = (X −µ)/σ ,

E [Z ] =
∫ ∞

−∞
xfZ (x) dx

=
1√
2π

∫ ∞

−∞
xe−x2/2 dx

=− 1√
2π

e−x2/2
∣∣∣∣
∞

−∞

= 0

X = µ + σZ
E [X ] = µ + σE [Z ]

= µ

Var(Z ) = E [Z 2]

=
∫ ∞

−∞
x2fZ (x) dx

=
1√
2π

∫ ∞

−∞
x2e−x2/2 dx

Integration by parts (u = x , v =−e−x2/2)

Var(Z ) =
1√
2π

(
−xe−x2/2

∣∣∣
∞

−∞
+
∫ ∞

−∞
e−x2/2 dx

)

=
1√
2π

∫ ∞

−∞
e−x2/2 dx

= 1

Var(X ) = σ2Var(Z )

= σ2
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Normal Distribution

CDF of Normal(0,1)

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2 dy

Symmetry of SN pdf
If Z ∼ Normal(0,1), then

P{Z ≤−x}= P{Z > x}

Φ(−x) = 1−Φ(x), x ∈R

X .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

· · ·
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

Table: Area Φ(x) Under the Standard Normal
Curve to the Left of X
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Probability Theory: Continuous Random Variables Common Continuous Probability Distributions

Normal Distribution

Answering probability statements about normal RVs

FX (a) = P{X ≤ a}

= P
(

X −µ
σ
≤ a−µ

σ

)

= P
(

Z ≤ a−µ
σ

)

= Φ

(
a−µ

σ

)
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Probability Theory: Continuous Random Variables Common Continuous Probability Distributions

Normal Distribution
Example

If X ∼ Normal(µ = 3,σ2 = 9), find P{2 < X < 5}.

P{2 < X < 5}= P
{

2−3
3

<
X −3

3
<

5−3
3

}

= P
{
−1

3
< Z <

2
3

}

= Φ

(
2
3

)
−Φ

(
−1

3

)

= Φ

(
2
3

)
−
[

1−Φ

(
1
3

)]

≈ Φ(.67) + Φ(.33)−1
≈ .7486 + .6293−1
= .3779
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Probability Theory: Continuous Random Variables Common Continuous Probability Distributions

Normal Distribution
The Normal Approximation to the Binomial Distribution
When n is large, a binomial RV variable with parameters n and p will
have approximately the same distribution as a normal RV with the same
mean and variance as the binomial.

The DeMoivre–Laplace limit theorem
If Sn denotes the number of successes that occur when n independent
trials, each resulting in a success with probability p, are performed, then,
for any a < b,

P

{
a≤ Sn−np√

np(1−p)
≤ b

}
→ Φ(b)−Φ(a) as n→ ∞

Proof
A special case of the central limit theorem.
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Probability Theory: Continuous Random Variables Common Continuous Probability Distributions

Normal Distribution

The normal approximation is quite good when np(1−p)≥ 10.

Example
Let X be the number of times that a fair coin that is flipped 40 times
lands on heads. Find the probability that X = 20.

P{X = 20}= P {19.5≤ X < 20.5} (continuity correction)

= P
{

19.5−20√
10

≤ X −20√
10

<
20.5−20√

10

}

≈ P
{
−.16≤ X −20√

10
< .16

}

≈ Φ(.16)−Φ(−.16) ≈ .1272

The exact result is

P{X = 20}=

(
40
20

)(
1
2

)40

≈ .1254
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