

c 2022 Prof. Hicham Elmongui 10 / 38

 $\frac{1}{2}$ $\sqrt{2}$ 3 $\bigg\}^2 = \frac{1}{10}$ 18

 $Var(X) = E[X^2] - (E[X])^2 = \frac{1}{2}$

c 2022 Prof. Hicham Elmongui 21 / 38

Gamma Distribution
\nThe Gamma Random Variable
\nA RV is said to have a gamma distribution with parameters (α, λ), α > 0,
\nλ > 0, if its pdf is given by
\n
$$
f(x) = \begin{cases}\n\frac{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)} & x \ge 0 \\
0 & x < 0\n\end{cases}
$$
\nwhere $\Gamma(\alpha)$, called the gamma function, is defined as
\n
$$
\Gamma(\alpha) = \int_0^\infty e^{-y} y^{\alpha-1} dy
$$
\n\nThe gamma distribution with $\lambda = \frac{1}{2}$ and $\alpha = n/2$, $n \in \mathbb{Z}^+$, is called the
\n χ_n^2 (read "chi-squared") distribution with *n* degrees of freedom. The
\nchi-squared distribution arises in practice as the distribution of the error
\ninvolved in attempting to hit a target in *n*-dimensional space when each
\ncoordinate error is normally distributed.

c 2022 Prof. Hicham Elmongui 22 / 38

Probability Theory: Continuous Random Variables Common Continuous Probability Distributions

Probability Theory: Continuous Random Variables	Common Continuous Probability Distributions
Chenma Distribution	
The Gamma function	
The Gamma function	
The German function	
The German function	
The German function	
The German function	
The German function	
The German function	
For the first $(a) \text{ by parts } (a = y^{\alpha-1}, v = -e^{-y}) \text{ yields}$	
For $(\alpha) = -e^{-y}y^{\alpha-1}\Big _0^{\infty} + \int_0^{\infty} e^{-y}(\alpha - 1)y^{\alpha-2} \, dy$	
= $(\alpha - 1)\int_0^{\infty} e^{-y}y^{\alpha-2} \, dy$	
= $(\alpha - 1)\Gamma(\alpha - 1)$	
For integral values of α , say, $\alpha = n$,	
For $(n) = (n-1)\Gamma(n-1)$	
= $(n-1)(n-2)\Gamma(n-2)$	
= \cdots	
= $(n-1)(n-2)\cdots 2 \times 1 \times \Gamma(1)$	
Example 23/38	

Probability Theory: Continuous Random Variables

\nGamma

\n
$$
E[X] = \int_{-\infty}^{\infty} xf(x) \, dx
$$
\n
$$
= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \lambda x e^{-\lambda x} (\lambda x)^{\alpha-1} \, dx
$$
\n
$$
= \frac{1}{\lambda \Gamma(\alpha)} \int_{0}^{\infty} e^{-\lambda x} (\lambda x)^{\alpha} \, dx
$$
\n
$$
= \frac{1}{\lambda \Gamma(\alpha)} \int_{0}^{\infty} e^{-\lambda x} (\lambda x)^{\alpha} \, dx
$$
\n
$$
= \frac{\Gamma(\alpha+1)}{\lambda \Gamma(\alpha)}
$$
\n
$$
= \frac{\alpha}{\lambda}
$$
\n
$$
Var(X) = E[X^{2}] - (E[X])^{2}
$$
\n
$$
= \frac{\alpha(\alpha+1)}{\lambda^{2}}
$$
\n
$$
= \frac{\alpha(\alpha+1)}{\lambda^{2}}
$$
\n
$$
Var(X) = E[X^{2}] - (E[X])^{2}
$$
\n
$$
= \frac{\alpha(\alpha+1)}{\lambda^{2}} - \frac{\alpha^{2}}{\lambda^{2}}
$$
\n
$$
Var(X) = \frac{\alpha(\alpha+1)}{\lambda^{2}}
$$
\n
$$
Var(X) = \frac{\alpha^{2}}{\lambda^{2}}
$$

Gamma Distribution

Erlang distribution with parameters (n, λ) arises as the distribution of the amount of time one has to wait until a total of *n* events has occurred.

Ŧ

- Let *N*(*t*) denote the number of events that have occurred by time *t*
- Let T_n denote the time at which the n^{th} event occurs

 \bullet *N*(*t*) ∼ Poisson(λ *t*)

$$
P\{T_n \leq t\} = P\{N(t) \geq n\}
$$
\n
$$
= \sum_{j=n}^{\infty} P\{N(t) = j\}
$$
\n
$$
= \sum_{j=n}^{\infty} \frac{e^{-\lambda t}(\lambda t)^{j-1}\lambda}{j!} - \sum_{j=n}^{\infty} \frac{\lambda e^{-\lambda t}(\lambda t)^{j}}{j!}
$$
\n
$$
= \sum_{j=n}^{\infty} \frac{e^{-\lambda t}(\lambda t)^{j-1}}{(j-1)!} - \sum_{j=n}^{\infty} \frac{\lambda e^{-\lambda t}(\lambda t)^{j}}{j!}
$$
\n
$$
= \frac{\lambda e^{-\lambda t}(\lambda t)^{n-1}}{(n-1)!}
$$
\n\nExample 2.67.88

c 2022 Prof. Hicham Elmongui 25 / 38

Probability Theory: Continuous Random Variables

\nNormal Distribution

\n
$$
f(x) \text{ is a probability function}
$$
\n
$$
\int_{-\infty}^{\infty} f(x) \, dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-(x-\mu)^{2}/2\sigma^{2}} \, dx
$$
\nMaking the substitution $y = (x - \mu)/\sigma$,

\n
$$
\int_{-\infty}^{\infty} f(x) \, dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-y^{2}/2} \, dy
$$
\n
$$
= \frac{1}{\sqrt{2\pi}} \times \sqrt{2\pi}
$$
\n
$$
= 1
$$
\nQ2022 Prof. Hicham Elmongui

\n29/38

Probability Theory: Continuous Random Variables Common Common Continuous Probability Distributions Normal Distribution $I = \int_{0}^{\infty} e^{-y^2/2} dy$ −∞ $I^2 = \int_{0}^{\infty}$ $\int_{-\infty}^{\infty} e^{-y^2/2} dy \int_{-\infty}^{\infty}$ −∞ e −*x* ²/² d*x* $=$ \int^{∞} −∞ \int^{∞} −∞ e −(*y* ²+*x* 2)/² d*y* d*x* Changing the variables to polar coordinates ($x = r \cos \theta$, $y = r \sin \theta$ and $dy dx = r d\theta dr$ $I^2 = \int_{0}^{\infty}$ 0 \int ^{2π} $\int_0^{2\pi} e^{-r^2/2} r dθ dr$ $= 2\pi \int_{0}^{\infty}$ 0 *r* e −*r* ²/² d*r* $= -2\pi e^{-r^2/2}$ ∞ 0 $= 2\pi$ \implies $I = \sqrt{2\pi}$ c 2022 Prof. Hicham Elmongui 30 / 38

Normal Distribution

The Normal Approximation to the Binomial Distribution

When *n* is large, a binomial RV variable with parameters *n* and *p* will have approximately the same distribution as a normal RV with the same mean and variance as the binomial.

Probability Theory: Continuous Random Variables Common Continuous Probability Distributions

The DeMoivre–Laplace limit theorem

If *Sⁿ* denotes the number of successes that occur when *n* independent trials, each resulting in a success with probability *p*, are performed, then, for any $a < b$,

c 2022 Prof. Hicham Elmongui 37 / 38

$$
P\left\{a\leq \frac{S_n-np}{\sqrt{np(1-p)}}\leq b\right\}\to \Phi(b)-\Phi(a)\qquad \text{as }n\to\infty
$$

Proof

A special case of the central limit theorem.

Normal Distribution

The normal approximation is quite good when *np*(1−*p*) ≥ 10.

Probability Theory: Continuous Random Variables Common Continuous Probability Distributions

I

Example

I

Let X be the number of times that a fair coin that is flipped 40 times lands on heads. Find the probability that $X = 20$.

$$
P\{X = 20\} = P\{19.5 \le X < 20.5\} \qquad \text{(continuity correction)}
$$
\n
$$
= P\left\{\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} < \frac{20.5 - 20}{\sqrt{10}}\right\}
$$
\n
$$
\approx P\left\{-16 \le \frac{X - 20}{\sqrt{10}} < 16\right\}
$$
\n
$$
\approx \Phi(.16) - \Phi(-.16) \qquad \approx .1272
$$
\nThe exact result is\n
$$
P\{X = 20\} = \binom{40}{20} \left(\frac{1}{2}\right)^{40} \approx .1254
$$

c 2022 Prof. Hicham Elmongui 38 / 38