

f, defined for all real $x \in (-\infty,\infty)$, having the property that, for any measurable set B of real numbers,

$$P\{X\in B\}=\int_B f(x)\,\,\mathrm{d} x$$

The function *f* is called the *probability density function* of the random variable X.

 $\mathbf{P}(\mathbf{X} = (\mathbf{X})) \int_{-\infty}^{\infty} f(\mathbf{x}) d\mathbf{x}$

$$1 = P\{X \in (-\infty,\infty)\} = \int_{-\infty} I(X) \, \mathrm{d}X$$

Probability Theory: Continuous Random Variables	Expectation and Variance of Continuous Random Variables	
Expectation of Continuous RVs		
The expectation (or expected value) of a continuous RV X		
If X is a continuous RV having pdf $f(x)$, then,		
$f(x) dx \approx P\{x \le X \le x + dx\}$ for dx small		
it is easy to see that		
$E[X] = \int_{-}^{\infty}$	$\int_{-\infty}^{\infty} xf(x) dx$	
Example		
Find $E[X]$ when the pdf of X is:	$f(x) = \begin{cases} 2x & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$	
$E[X] = \int_{-\infty}^{\infty} xf(x) \mathrm{d}x$		
$=\int_0^1 2x$	$x^2 dx = \frac{2}{3}$	
©2022 Prof. Hicham Elmongui	6 / 38	

Variance of a Continuous RV Definition

if X is a RV variable with expected value μ , then the variance of X is defined (for any type of RV) by

Expectation and Variance of Continuous Random V

$$\operatorname{Var}(X) = E\left[(X - \mu)^2\right]$$
$$= E[X^2] - \left(E[X]\right)^2$$

Example

Find Var(X) when the pdf of X is:

$$f(x) = \begin{cases} 2x & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f(x) \, dx = \int_0^1 2x^3 \, dx = \frac{1}{2}$$

$$Var(X) = E[X^2] - \left(E[X]\right)^2 = \frac{1}{2} - \left(\frac{2}{3}\right)^2 = \frac{1}{18}$$

Probability Theory: Continuous Random Variables	Common Continuous Probability Distributions	
Probability Theory: Continuous Random variables	Common Continuous Probability Distributions	
Uniform Distribution		
The Standard Uniform Random Variable		
A RV is said to be <i>uniformly</i> distributed ove probability density function is given by	r the interval (0,1) if its	
$f(x) = \int 1 0 < x < 1$		
$f(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$		
$\int_{-\infty}^{\infty} f(x) \mathrm{d}x = \int_{0}^{1} 1 \mathrm{d}x = 1$		
The probability that X is in any particular subinterval of (0, 1) equals the length of that subinterval. For any $0 < a < b < 1$,		
$P\{a \le X \le b\} = \int_a^b f(x) \mathrm{d}x =$	= b – a	

12/38

(a > 0)

Probability Theory: Continuous Random Variables	Common Continuous Probability Distributions	
Exponential Distribution	<u> </u>	
Example		
Suppose that the number of miles that a car can run before its battery wears out is exponentially distributed with an average value of 10,000 miles. If a person desires to take a 5000-mile trip, what is the probability that she will be able to complete the trip without having to replace the car battery? What if the distribution is not exponential?		
From the memoryless property of the exponential distribution, the remaining lifetime (in thousands of miles) of the battery is exponential with parameter $\lambda = \frac{1}{10}$		
P {remaining lifetime > 5} = 1	$-F(5) = e^{-5\lambda} = e^{-1/2} \approx .604$	
If the lifetime distribution <i>F</i> is not exponential		
P {lifetime > t + 5 lifetime	$me > t\} = \frac{1 - F(t+5)}{1 - F(t)}$	
©2022 Prof. Hicham Elmonoui	21/38	

Probability Theory: Continuous Random Variables
Common Continuous Probability Distributions
F(
$$\alpha$$
) = $\int_{0}^{\infty} e^{-y} y^{\alpha-1} dy$
Integration of $\Gamma(\alpha)$ by parts ($u = y^{\alpha-1}$, $v = -e^{-y}$) yields
 $\Gamma(\alpha) = -e^{-y} y^{\alpha-1} \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-y} (\alpha - 1) y^{\alpha-2} dy$
 $= (\alpha - 1) \int_{0}^{\infty} e^{-y} y^{\alpha-2} dy$
 $= (\alpha - 1) \Gamma(\alpha - 1)$
For integral values of α , say, $\alpha = n$,
 $\Gamma(n) = (n-1)\Gamma(n-1)$
 $= (n-1)(n-2)\Gamma(n-2)$
 $= \cdots$
 $= (n-1)(n-2)\cdots 2 \times 1 \times \Gamma(1) \implies \Gamma(n) = (n-1)!$

Gamma Distribution

The Erlang distribution is a special case of the gamma distribution

The Erlang Random Variable

A RV is said to have an Erlang distribution with parameters (n, λ) , $\lambda > 0$, $n \in \mathbb{Z}^+$, if its pdf is given by

on Continuous Probability Dis

utions

I

$$f(t) = \begin{cases} \frac{\lambda(\lambda t)^{n-1} e^{-\lambda t}}{(n-1)!} & t \ge 0\\ 0 & t < 0 \end{cases}$$

$$\int_{-\infty}^{\infty} f(t) \, \mathrm{d}t = \int_{0}^{\infty} \frac{\lambda(\lambda t)^{n-1} \mathrm{e}^{-\lambda t}}{(n-1)!} \, \mathrm{d}t = \frac{1}{(n-1)!} \int_{0}^{\infty} (\lambda t)^{n-1} \mathrm{e}^{-\lambda t} \, \mathrm{d}\lambda t$$
$$= \frac{\Gamma(n)}{(n-1)!} = \frac{(n-1)!}{(n-1)!} = 1$$

Gamma Distribution

Erlang distribution with parameters (n, λ) arises as the distribution of the amount of time one has to wait until a total of *n* events has occurred.

Continuous Probability Dis

L

- Let N(t) denote the number of events that have occurred by time t
- Let T_n denote the time at which the n^{th} event occurs
- $N(t) \sim \text{Poisson}(\lambda t)$

$$P\{T_n \le t\} = P\{N(t) \ge n\}$$

$$= \sum_{j=n}^{\infty} P\{N(t) = j\}$$

$$= \sum_{j=n}^{\infty} \frac{e^{-\lambda t} (\lambda t)^j}{j!}$$

$$= \sum_{j=n}^{\infty} \frac{e^{-\lambda t} (\lambda t)^j}{j!}$$

$$= \sum_{j=n}^{\infty} \frac{\lambda e^{-\lambda t} (\lambda t)^{j-1} \lambda}{j!} - \sum_{j=n}^{\infty} \frac{\lambda e^{-\lambda t} (\lambda t)^j}{j!}$$

$$= \frac{\lambda e^{-\lambda t} (\lambda t)^{n-1}}{(n-1)!}$$

$$E(2022 \text{ Prof. Heham Elmongui})$$

Probability Theory: Continuous Random Variables	Common Continuous Probability Distributions	
Gamma Distribution	U	
Expectation and variance of Erla For integral values of α , say, $\alpha = n$,		
$E[X] = \frac{\alpha}{\lambda} = \frac{n}{\lambda}$ $Var(X) = \frac{\alpha}{\lambda^2} = \frac{n}{\lambda^2}$		
Erlang RV as a sum of <i>n</i> independent identical exponential RVs $X = X_1 + X_2 + \dots + X_n$ ($X \sim \text{Erlang}(n, \lambda), X_i \sim \text{Exponential}(\lambda), \text{indep}.X_i$'s)		
$E[X] = E[X_1] + E[X_2] + \dots + E[X_n]$ $= \frac{1}{\lambda} + \frac{1}{\lambda} + \dots + \frac{1}{\lambda}$ $= \frac{n}{\lambda}$ Value	$\operatorname{tr}(X) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \dots + \operatorname{Var}(X_n)$ $= \frac{1}{\lambda^2} + \frac{1}{\lambda^2} + \dots + \frac{1}{\lambda^2}$ $= \frac{n}{\lambda^2}$	
©2022 Prof. Hicham Elmongui	27 / 38	

To common Continuous Pardom Variables
Normal Distribution

$$f(x) \text{ is a probability function}$$

$$\int_{-\infty}^{\infty} f(x) \, dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-(x-\mu)^2/2\sigma^2} \, dx$$
Making the substitution $y = (x - \mu)/\sigma$,

$$\int_{-\infty}^{\infty} f(x) \, dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-y^2/2} \, dy$$

$$= \frac{1}{\sqrt{2\pi}} \times \sqrt{2\pi}$$

$$= 1$$

Normal Distribution

The Normal Approximation to the Binomial Distribution

When n is large, a binomial RV variable with parameters n and p will have approximately the same distribution as a normal RV with the same mean and variance as the binomial.

non Continuous Probability Dist

 $\rightarrow \infty$

butions

I

37 / 38

The DeMoivre–Laplace limit theorem

If S_n denotes the number of successes that occur when *n* independent trials, each resulting in a success with probability *p*, are performed, then, for any a < b,

$$P\left\{a \leq \frac{S_n - np}{\sqrt{np(1-p)}} \leq b\right\} \rightarrow \Phi(b) - \Phi(a)$$
 as n

Proof

2022 Prof. Hicham Elmo

A special case of the central limit theorem.

Normal Distribution

The normal approximation is quite good when $np(1-p) \ge 10$.

Common Continuous Probability Dist

L

Example

Let X be the number of times that a fair coin that is flipped 40 times lands on heads. Find the probability that X = 20.

$$P\{X = 20\} = P\{19.5 \le X < 20.5\} \qquad (continuity correction)$$
$$= P\left\{\frac{19.5 - 20}{\sqrt{10}} \le \frac{X - 20}{\sqrt{10}} < \frac{20.5 - 20}{\sqrt{10}}\right\}$$
$$\approx P\left\{-.16 \le \frac{X - 20}{\sqrt{10}} < .16\right\}$$
$$\approx \Phi(.16) - \Phi(-.16) \qquad \approx .1272$$
The exact result is
$$P\{X = 20\} = {40 \choose 20} \left(\frac{1}{2}\right)^{40} \approx .1254$$